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Abstract. We calculate numerically the energy level distributions of the two-dimensional
Anderson model in the nearly clean, ballistic, diffusive and strongly localized regimes. The
Poisson statistics governs nearest level spacings in the clean (in the absence of degeneracies due
to the geometry) and localized regimes, whereas in the ballistic and diffusive regimes the level
statistics follows the Wigner–Dyson distribution. In the diffusive and ballistic regimes, we study
the critical energyEc, defined as the maximum energy up to which level fluctuations follow
the logarithmic behaviour characteristic of random-matrix theory (RMT). A reasonably accurate
determination of the ballistic–diffusive transition is achieved through the behaviour of the critical
energies. We show how the level statistic is an adequate tool for characterizing the different
regimes of disordered systems, and how the results obtained are in qualitative agreement with
theoretical estimates. We finally analyse the behaviour ofEc as a function of the energy within
the band.

1. Introduction

Scaling theory [1] of Anderson localization suggests that there exists no conducting state
in an infinite two-dimensional disordered system at zero temperature, since all one-electron
wave functions are localized even for arbitrarily small fluctuations of a random potential.
The corresponding energy levels are distributed completely at random. Therefore, for any
non-vanishing disorder the distribution of nearest level spacings is given by the Poisson law
in the thermodynamic limit. For finite systems, we have different regimes according to the
ratio between the different length scales and the linear size of the system (or alternatively
in terms of the ratio between energy scales). For a fixed linear sizeL (L < lφ , wherelφ is
the phase-breaking length) we can classify the systems into four regimes, which in order of
decreasing disorder are:

(i) the strongly localized regime: when the Anderson localization lengthξ is smaller
thanL (L > ξ );

(ii) the diffusive regime: when the localization length is larger thanL but the elastic
mean free pathl is smaller thanL (l < L < ξ );

(iii) the ballistic regime: when the elastic mean free pathl is larger thanL, and
the mixing of the crystal states by the disorder potential is larger than the level spacing
(1< lL−1 < pFL, wherepF is the Fermi momentum); and

(iv) the clean limit: when the energy perturbation of each state is smaller than the mean
level spacing1 (lL−1 > pFL).
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Our aim is to investigate this classification using the level statistics of the corresponding
systems. The study of level statistics of disordered quantum systems has attracted
considerable attention recently. In particular, the spectral correlations of these systems
play a fundamental role in the study of quantum chaos and in the physics of mesoscopic
systems.

There are several quantities that measure the fluctuations of energy levels. In the RMT
they depend only on the symmetry of the Hamiltonian. If it is invariant under rotations and
under time-reversal symmetry, the fluctuations are described by the Gaussian orthogonal
ensemble (GOE) of random matrices [2–4]. There is a repulsion between nearest levels,
whose spacings follow Wigner–Dyson statistics [3, 5–7]. This is true for diffusive as well
as for ballistic systems, provided that the typical value of the disorder energy exceeds the
mean level spacing, which implies that the energy spectra differ drastically from the clean
case. Two of these quantities widely used in literature are the following.

(i) The distributionP(s) = 〈δ(ε − εi + εi+1)〉 of the normalized spacings = ε/1

between consecutive levels. In the GOE it is well described by the Wigner surmise

PW(s) = πs

2
exp

(
−πs

2

4

)
(1)

while, when there is no correlation between levels, it has a Poissonian behaviour:

PP(s) = exp(−s). (2)

(ii) The number variance62(E):

62(E) = 〈δN2(E)〉 = 〈N2(E)〉 − 〈N(E)〉2. (3)

This measures the fluctuation in the number of levelsN(E) in a strip of widthE. The
average〈 〉 can be taken either over several realizations of disorder or, as usual in quantum
chaos, over different regions of the spectrum. For the uncorrelated case, the number variance
is Poisson like:

62
P(E) = E (4)

while for the GOE,62(E) increases logarithmically withE [3, 7]:

62
W(E) ≈

2

π2

[
ln(2πE)+ γ + 1− π

2

8

]
(5)

whereγ = 0.5772. . . is Euler’s constant. Note that for sufficiently largeE the dependence
of 62 on E is much weaker than the linear dependence expected for uncorrelated energy
levels. Long-range fluctuations of the GOE are thus very small, a characteristic known as
spectral rigidity.

Levels follow a Poisson distribution only if the disorderW is strong enough that the
localization lengthξ is shorter than the system sizeL. With decreasingW the electron
states change gradually from strongly localized to weakly localized and the energy levels
become more correlated. Whenξ > L their statistics is well described by the Wigner–Dyson
distribution. The number variance of the spectra of quantum Hamiltonians obeying Wigner–
Dyson statistics follows the GOE behaviour up to a critical energy, generically known as
the Thouless energy [8]. We will use this critical energy to investigate the ballistic–diffusive
transition.

In this paper we carry out a numerical analysis of the energy spectra of the 2D Anderson
model. We vary the disorder energyW for a given linear sizeL in order to obtain the four
above-mentioned regimes. ThroughP(s) we study the frontier between strongly localized
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and diffusive systems, on one hand, and between ballistic and nearly clean systems on
the other hand. The analysis of the critical energy and fluctuations above it allows us to
distinguish between diffusive and ballistic systems.

2. The model and numerical procedures

The dynamics of non-interacting electrons in the presence of disorder that breaks the
translational symmetry can be investigated using the tight-binding Hamiltonian

H =
∑
r

ωr|r〉〈r| +
∑
〈r 6=r′〉

trr′ |r〉〈r′| (6)

where the vectorsr label the sites of the sample, and thetrr′ are the non-diagonal
transfer matrix elements connecting sitesr and r′ (the symbol〈 〉 restricts the sum to
nearest-neighbour sites). The uncorrelated random energiesωr are distributed with constant
probability within the interval(−W/2,W/2), whereW denotes the strength of the disorder.
We will consider square samples of sizeL × L, and with a lattice constanta. In the
following we taketrr′ ≡ t = −1 anda = 1, which set up the energy unit and length unit,
respectively. Calculations have been carried out on samples of sizes up toL = 60, and, for
each value of the disorderW , we consider at least 1000 different realizations. In computing
the whole spectrum we used the Schwarz algorithm for symmetric band matrices [9].

In order to characterize the statistical properties of the spectra it is customary to map
each real spectrum{εi} onto the unfolded spectrum{Ei} throughEi = N(εi), whereN(εi)
is the number of levels up to an energyεi , and the overline denotes averaging over different
disorder realizations. The spectrum{Ei} has on the average a constant mean spacing equal
to one. After rescaling, the number variance in an energy window [εF, εF + E] is calc-
ulated, where the initial energy is calledεF by analogy with the Fermi energy, since this
is the relevant energy in the calculations of some magnitudes. In this work,62 has been
obtained by a different numerical procedure [10] which gives a better account of the fine
details of the number variance. We have checked that the overall features are procedure
independent, i.e. that our method coincides with the standard one when subtleties are ignored.

The method, which gives no fluctuations in the clean limit, has the following features.
For each value ofW andL an energy window aroundεF is defined: [εF − δ/2, εF + δ/2].
Random energiesε1 and ε2 within this interval are chosen. The mean number of levels
within interval [ε1, ε2] is given by

N = 〈N(ε1)−N(ε2)〉W (7)

where N(ε) gives the total number of states below energyε for a particular disorder
realization; 〈 〉W indicates averaging over disorder configurations. In the same way, the
mean of the squared number of levels in this energy interval is given by

N2 = 〈[N(ε1)−N(ε2)]
2〉W . (8)

The variance of the number of levels contained in the energy interval [ε1, ε2] is simply

62(N) = N2−N 2. (9)

This provides a value of62(εF, E) (note thatE = N ). The sequence is repeated a large
number of times for randomly selected energy intervals [ε1, ε2] within [εF− δ/2, εF+ δ/2]
until a relatively smooth value is obtained for the variance of the number of levelsaveraged
over energy intervals containing the same number of levels. The last step implies averaging
over the selected energy region aroundεF.
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3. Level spacing distributions

We first try to obtain as much information as possible from the nearest level spacing distrib-
utions. In the strongly localized regime the level spacing follows a Poisson distribution
since localized states are usually spaced far apart, and so their energies are not correlated.
On the other hand, diffusive and ballistic systems have overlapping wave functions with
strong correlations which produce a Wigner–Dyson distribution of level spacings. In the
nearly clean limit (in 2D) we obtain again Poisson statistics, because the energy of each
level corresponds to a sum of two uncorrelated contributions, each one associated with a
component of the quasi-momentum.

0.1 1.0 10.0
W

0.0

0.5

1.0

1.5

2.0

va
ri

an
ce

Nearly
clean

Ballistic Diffusive Strongly
localized

Figure 1. The variance of the nearest level spacing distributions as a function of the disorder
parameterW for a system withL = 50. The results correspond to an average over an energy
window (−2.2,−1.8). The dashed horizontal lines correspond to the Poisson (1) and Wigner
(0.286) variances. The vertical solid lines mark the clean–ballistic and diffusive–localized
transitions. The vertical dashed line corresponds to the ballistic–diffusive transition.

A suitable way to study a transition from a Poisson to a Wigner distribution is through
the variance ofs, namely,〈s2〉 − 〈s〉2. This variance is equal to 1 and 0.286 for a Poisson
and for a Wigner–Dyson distribution, respectively. In figure 1 we show on a logarithmic
scale the variance of the nearest level spacing distributionP(s) as a function of the disorder
parameterW for the system sizeL = 50. The horizontal lines correspond to the Poisson
and Wigner–Dyson variances. As expected we can clearly see two transitions: one from a
Poisson to a Wigner distribution, corresponding to the change from the clean limit to the
ballistic regime, and another from a Wigner to a Poisson distribution, corresponding to the
diffusive-to-localized transition. We have marked with vertical solid lines both transitions,
which we now analyse separately. The vertical dashed line represents the ballistic–diffusive
transition, which is not reflected in the behaviour of the variance, and which will be studied
in the next section.

3.1. Transitions from clean to ballistic systems

The critical disorder for the clean–ballistic transition is approximately that for which the
spreading width induced by the disorder perturbation is equal to the mean level spacing.
As the site disorder energies are uncorrelated, the previous spreading width is equal to the
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standard deviation of the disorder energy of a single site divided by the square root of the
number of sites. In our case this is equal toσ = W/(√3L). As the average level spacing
is 8/L2, the critical disorder is given by

Wc = 8
√

3

L
. (10)

For the size corresponding to the figure,L = 50, equation (10) predicts a value of 0.28.
This critical disorder is indicated in figure 1 by means of a vertical line which lies in the
region where the variance is changing from the value corresponding to the Wigner–Dyson
distribution (0.286) to that of the Poisson distribution (see figure 1). Note that for very low
disorder strengths the variance is greater than 1. This deviation between the value found
numerically and the corresponding value of the Poisson distribution is due to degeneracies
caused by the square geometry [11].

3.2. Transitions from diffusive to strongly localized systems

We estimate the critical disorder for the diffusive–localized transition from the condition
ξ = L, ξ being the localization length, whereL = 50 for the data reported in figure 1. Using
the results of references [12, 13] we can obtain the disorder parameterW corresponding to
this localization length. In order to do so we have to take into account the fact that we are
not studying the centre of the band (ε = 0) whose states become most delocalized since
the kinetic energy is maximal for tight-binding models, but an energyε = −2 [14]. W
turns out to be approximately 6.6. This value is indicated in figure 1 by means of a vertical
line which again lies in the region where the variance is changing from the Wigner–Dyson
to the Poisson value. Similar results are obtained forL = 20 andL = 40. Note that the
critical disorder for the transition from the diffusive to the strongly localized regime only
depends weakly onL [12–14].

4. The critical energy

As we remarked in the introduction, disordered systems with extended states can be either
diffusive or ballistic depending on whether the elastic mean free pathl is smaller or larger
than the linear size of the systemL, respectively. The mean free pathl can be obtained from
the imaginary part of the self-energy,l = vFτF = h̄vF/2|Im6(εF)|. From this expression,l
can be written in terms of the model’s parameters as [15, 16]

l ≈ 6h̄vF/(W
2πν(εF)). (11)

The spectra of these systems always obey Wigner–Dyson statistics, but exhibit different
types of long-range (in energy) fluctuations depending on whether they are diffusive or
ballistic. In this section we try to find the ballistic–diffusive transition through the study
of long-range fluctuations of the energy levels, or more specifically through the number
variance62(εF, E) and the critical energies.

In figure 2 we show, on a double-logarithmic scale,62(εF, E) as a function of the
normalized energyE for the 2D Anderson model withL = 50, εF = −2 and different
values of the disorder strength. The thin lines give the linear and logarithmic behaviour
of the Poisson and GOE, respectively. The uppermost curve corresponds to the strongly
localized regime (W = 20) and follows the Poisson behaviour quite well, as expected. The
next curve (W = 2) gives the fluctuations of a diffusive case, for which the ratiol/L is
approximately 0.2. Fluctuations follow the GOE up to a critical energy and then increase
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Figure 2. 62(εF, E) as a function ofE for L = 50 andεF = −2. The thin lines give the
Poisson (upper) and Wigner fluctuations (lower). The inset shows the corresponding values for
the diffusive (squares) and ballistic (circles) regimes on normal scales.

beyond the GOE, although at a much slower pace than in the completely uncorrelated
case. The second curve from the bottom corresponds to the ballistic regime (W = 0.8
and l/L ≈ 1.34). A critical energy which sets a limit on the applicability of RMT also
exists in this regime. For energies higher than the critical one, the fluctuations are smaller
than predicted by the GOE and remain almost constant as soon as they deviate from the
logarithmic behaviour. The lowest curve (W = 0.2) gives the fluctuations in the nearly
clean regime. We can note that these fluctuations are small, and oscillate as a function of
energy as a consequence of finite-size oscillations in the density of states [17].

In the inset of figure 2, we show62(εF, E) for the diffusive (squares) and ballistic
(circles) regimes on normal scales. The thin line represents the result for the GOE. In
determiningEc we have used curves similar to these ones for different values ofL andW .
The criterion that we have followed is thatEc is the energy at which the numerical results
for the fluctuations deviate by 2% from the GOE.

A direct way to obtain the critical disorder strength for the diffusive–ballistic transition
is by finding the value whose fluctuations follow those of the GOE as closely as possible.
However, in practice, it is more convenient to find the transition from the behaviour of the
critical energy, as we do now. The critical energy in the diffusive regime (the Thouless
energy) is associated with the inverse transport time through the system, and in normalized
units is given by [16]

ED
c =

3h̄2v2
F

π
W−2 (12)
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wherevF is the Fermi velocity. In ballistic systems, the critical energy loses its meaning as
an inverse transport time through the system, and in normalized units is equal to [16, 18]

EB
c =

L2πν2(εF)

6
W 2. (13)

While the critical energy increases with disorder asW 2 in the ballistic regime, it
decreases asW−2 in the diffusive case. We will use this fact to estimate the critical
disorder of the ballistic–diffusive transition. In the numerical calculations we have taken
h̄ = 1.

1.0 10.0
W

1

10

E
c

Ballistic Diffusive

Figure 3. A log–log plot of the critical energyEc in the ballistic (open squares) and diffusive
(filled squares) regimes as a function of the disorder parameterW for L = 50 and an energy
average over the range(−2.2,−1.8). The fitted straight lines are:EB

c = (7.4±1.0)W(1.88±0.14)

(ballistic); andED
c = (19.8± 1.0)W(−2.04±0.08) (diffusive). The vertical dashed lines mark the

clean–ballistic and diffusive–localized transitions. The solid line corresponds to the ballistic–
diffusive transition.

In figure 3 we show on a log–log scale the critical energyEc in the ballistic (open
squares) and diffusive (filled squares) regimes as functions of the disorder parameterW for
L = 50. The results are averaged over an energy range(−2.2,−1.8). The fitted straight
lines are: EB

c = (7.4 ± 1.0)W(1.88±0.14) (ballistic); andED
c = (19.8 ± 1.0)W(−2.04±0.08)

(diffusive). The slopes of the two straight lines,−2.04 and 1.88, are in good agreement with
the theoretical predictions of the exponents ofW , −2 and 2, from equations (12) and (13),
respectively. The numerical results for the factor multiplying the power ofW do, however,
disagree with the results obtained from equations (12) and (13). In the ballistic regime
equation (13) gives 13.1, to be compared with the numerical result 7.4. The disagreement
is even more important in the diffusive regime—namely, whereas equation (12) gives 4.8,
our numerical result is 19.8.

The dashed lines mark the clean–ballistic and diffusive–localized transitions obtained
in the previous section. The solid line represents the ballistic–diffusive transition and goes
through the crossing point of the two straight lines fitting the critical energies in the two
regimes.
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The critical disorder energy for this transition can be estimated by equating the two
critical energies, equations (12) and (13). We arrive at

Wc =
√

21/23h̄vF

πν
L−1/2. (14)

Wc for this transition decreases with increasing system sizeL at a slower pace than for the
clean–ballistic transition but at a faster pace than for the diffusive–localized transition. For
the size considered in the figure (L = 50) equation (14) predicts a value of 0.8, not far
from the numerical result (1.28) obtained from the results for the critical energies shown in
figure 3. The mean free path corresponding to the numerical result for the critical disorder
is 26, which is of the order of the actual system size (L = 50).
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Figure 4. The critical energyEc as a function of energy in the diffusive,W = 1.8 (squares)
and ballistic,W = 1.0 (circles) regimes. It was calculated by averaging for each energyε in
the range(ε − 0.2, ε + 0.2). The solid line is a fit toEc in the diffusive case, proportional to
v2

F, and the dashed line is a fit to the results of the ballistic case, proportional toν2(εF).

In order to complete the study of the critical energy we have calculatedEc as a function
of the initial energyεF. In figure 4 we plot these results forL = 50 and two values
of the disorder,W = 1.8 in the diffusive regime (squares) andW = 1.0 in the ballistic
regime (circles). We also plot the square of the Fermi velocity (solid line), fitted by using
a constant factor to the results of the diffusive case, and the square of the density of
states (dotted line), fitted by using a different factor to the results of the ballistic case.
We observe significant variations inEc which reproduce changes in the Fermi velocity
(diffusive case; equation (12)) and in the density of states (ballistic regime; equation (13)).
The proportionality constant in the ballistic case is 740, approximately a factor of two
smaller than the theoretical value of equation (13), namely 1309. For the diffusive case,
this factor is 1.24, about four times the theoretical prediction, namely 0.3.

5. Conclusions

We have performed a systematic numerical analysis of energy fluctuations in the 2D
Anderson model, over a wide range of parameters, in the nearly clean, ballistic, diffusive
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and strongly localized regimes. Averages were taken over different realizations of disorder.
The main conclusions of our study are as follows.

(i) The nearest level spacing distribution is appropriate for determining the critical
disorder for the transition from the nearly clean to the ballistic require and for the transition
from the diffusive to the strongly localized regime.

(ii) In the ballistic and diffusive regimes, the fluctuations follow those of the GOE up
to a critical energyEc above which the behaviour of such systems is different.

(iii) We determine the ballistic–diffusive transition from the behaviour ofEc.
(iv) The numerical results obtained forEc qualitatively reproduce the expected

behaviour—namely, it is proportional toW−2 and toW 2 in the diffusive and ballistic
regimes, respectively.

(v) We checked thatEc is also proportional to the square of the Fermi velocity (the
diffusive case) and to the square of the density of states (the ballistic regime).

Summarizing, the level statistics of disordered systems is a very valuable tool for
characterizing the different transport regimes of these systems.
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